
On Trade-off Between Static and Dynamic Power Consumption in NoC Power Gating
Di Zhu†, Yunfan Li*, Lizhong Chen*

†Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, United States
*School of Electrical Engineering and Computer Science, Oregon State University, United States

Email: †dizhu@usc.edu, *{liyunf, chenliz}@oregonstate.edu

Abstract—Recent research has proposed to minimize network-
on-chip (NoC) static power by proactively power-gating selected
routers when not all the cores are active. However, as more routers
are powered off, on-chip packets are forced to take detours more
frequently, resulting in a higher hop count and increased dynamic
power that may potentially offset the static power savings. This
paper investigates such a trade-off between static and dynamic
power in detail, and explores how overall NoC power consumption
can be minimized through proactive power-gating. Three efficient
and effective algorithms are proposed to reduce NoC static power,
dynamic power, and overall power consumption, respectively.
Evaluation results based on PARSEC benchmarks demonstrate
the importance of the trade-off and show a substantial improve-
ment in total NoC power savings of the proposed algorithms, com-
pared with previous work that did not give full consideration to
both static and dynamic power.

I. INTRODUCTION
To meet the communication demands of parallel computing

among the many cores in a processor, networks-on-chip (NoCs)
have been proposed as the key communication component in the
system architecture. However, compared with traditional buses,
the relatively complex NoC architecture with routers and links
can draw a substantial percentage of the chip’s power (e.g., 28%
in Intel Teraflop [8] and 19% in Scorpio [6]). Meanwhile, many-
core processors often exhibit low core utilization (typically 15%
to 55% [1]), with some cores sent to deep sleep states periodi-
cally, making the NoC power percentage even higher if it is not
powered off proportionally to the core usage. In particular, a
considerable percentage of the NoC power is contributed by the
static power part, and this contribution will continue to grow as
manufacturing technology scales further.

Recent research has been proposed which applies power gat-
ing techniques to NoC routers to reduce static power. A popular
method to apply power gating is to turn on and off the NoC rout-
ers reactively ([4][5][11]), i.e., router states are determined by
incoming traffic, and idle routers that have no forwarded or
injected traffic are powered off. In these reactive, traffic-ori-
ented strategies, router idle periods are inherently limited to
what traffic patterns allow, and the lengths of the idle periods
tend to be fragmented by intermittent packet arrivals, with only
tens to hundreds of cycles in practice.

Another type of NoC power gating methods takes advantage
of under-utilized cores and proactively puts selected routers into
sleep, detouring any traffic that might need to go through these
routers [13][15]. This approach allows idle and under-utilized
routers to be powered off for longer periods of time, thus offer-
ing more savings in static power. However, detoured packets
may increase the overall hop count and router activities. This
leads to higher dynamic power that may potentially offset the
static power savings. Merely turning off as many routers as pos-
sible does not necessarily leads to the maximum total power sav-
ings. Therefore, it is imperative to take into account the penalty

of dynamic power consumption during power gating in order to
achieve the goal of power minimization.

In this work, we explore the above power reduction oppor-
tunity in proactive NoC power gating, and present effective al-
gorithms to improve total NoC power. First and foremost, we
identify that there is a trade-off between static power and dy-
namic power in proactive power gating of on-chip routers, and
conclude that the optimal solution with minimum overall power
should be found at a balance point between static and dynamic
power. We then present three effective power gating algorithms
with the awareness of core-state and communication status: the
first one to achieve the maximum static power savings, the sec-
ond one to minimize dynamic power penalty, and the last one to
locate the minimum overall NoC power solution. Evaluation
based on PARSEC benchmarks demonstrates the importance of
the trade-off as well as the advantage of the proposed algorithms
over prior art. In particular, for the proposed algorithm that op-
timizes the overall NoC power consumption, 33.4% NoC power
savings is achieved with only 3.5% latency overhead.

II. BACKGROUND

A. Power Consumption of On-Chip Networks
The power consumption of on-chip components includes dy-

namic power and static power. Figure 1 plots the power of a NoC
router at 3GHz under different technologies and injection rates
(flits per cycle), obtained by the DSENT NoC power model [14].
It can be seen that dynamic power increases linearly with the
injection rates of routers whereas the static power is independent
of router activity and strongly relates to manufacturing technol-
ogy. As shown in Figure 1(b), the average static power percent-
age of NoC routers increases considerably from 45.37% in 45nm
to 56.14% in 32nm when r=0.1. This urges researchers to find
effective techniques to reduce not only the dynamic power but
also the static power consumption of on-chip networks.

B. Power Gating Techniques of On-Chip Networks
Recent research has started to apply power gating to on-chip

routers, which cuts off the supply voltage to a router when it is
idle to save static power. Matsutani et al. propose a look-ahead
technique for NoC power gating to reduce the runtime latency
penalty [11]. Chen et al. equip a mesh-based NoC architecture
with a ring-based bypass channel, which achieves high power
saving with small latency penalty [4]. Das et al. use multiple

Figure 1. Dynamic and static power consumption in a NoC router.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

(a) 45nm

r=0.05 r=0.1 r=0.15

R
ou

te
r p

ow
er

 (W
)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

(b) 32nm

r=0.05 r=0.1 r=0.15

Dynamic
Static

narrow networks to achieve different levels of NoC power gat-
ing [5]. These works are all traffic-oriented power gating and do
not exploit the long idle period of sleeping cores.

Proactive power gating utilizes core idleness by using a cen-
tral control unit to collect traffic information and make decisions
on which routers are power-gated. Core status usually changes
at the time scale of milliseconds [10], which gives sufficient
time for calculation and exchange of router status and routing
information. Along this line, Samih et al. propose Router Park-
ing on mesh topology, with implementation to support proactive
power gating [13]. Yue et al. develop proactive power gating
algorithms on the flattened butterfly with the awareness of core
status [15]. These works, however, mainly target at minimizing
static power with no or limited consideration of the dynamic
power penalties brought by packet detours.

III. MOTIVATION
The NoC static power 𝑃𝑃𝑆𝑆 is determined by the number of ac-

tive routers,
𝑃𝑃𝑆𝑆 = 𝛾𝛾 ∙ |𝑹𝑹| (1)

where 𝛾𝛾 is the static power consumption of a single router, and
𝑹𝑹 is the set of active routers. Note that 𝑹𝑹 includes routers that
are directly connected to active cores (referred to as anchor rout-
ers hereinafter, e.g., Routers 2,4,9,11 in Figure 2), as well as
additional powered-on routers to main the connectivity among
all the active cores (e.g., Routers 3,6,10 in Figure 2). In order to
achieve maximum static power savings, we can power off as
many routers as possible with the condition that full connectivity
of anchor routers is maintained. Unfortunately, doing this may
potentially increase dynamic power consumption.

As mentioned in Section II.A, dynamic power consumption
of router 𝑖𝑖 is proportional to the router load 𝑙𝑙𝑖𝑖 , which can be
characterized as the number of packets processed by router 𝑖𝑖 per
unit time. With only the minimal set of 𝑹𝑹 to keep connectivity,
the paths between the anchor routers are limited, forcing packets
between some router pairs to detour and be forwarded through
more routers. This increase in hop count means that some routers
have to process increased packets during the same time period,
i.e., a higher load 𝑙𝑙𝑖𝑖, leading to the penalty in dynamic power.

Specifically, the total NoC dynamic power 𝑃𝑃𝐷𝐷 is propor-
tional to the summation of all router load ∑ 𝑙𝑙𝑖𝑖𝑖𝑖 . Notice that the
load sum ∑ 𝑙𝑙𝑖𝑖𝑖𝑖 is the total number of packets processed by all the
routers per unit time. This is equivalent to the total number of
hops traveled by all the packets during the unit time (e.g., a
packet traveling 3 hops is essentially processed three times).
Thus, if 𝐻𝐻 denotes the overall packet hop count per unit time
(referred to as overall hop count hereinafter), we have

� 𝑙𝑙𝑖𝑖
𝑖𝑖

= 𝐻𝐻 = � � ℎ𝑖𝑖𝑖𝑖 ∙ 𝑟𝑟𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

 (2)

where ℎ𝑖𝑖𝑖𝑖 denotes the number of hops a packet needs to travel
from anchor router 𝑖𝑖 to 𝑗𝑗, which is determined by the currently
active routers. 𝑟𝑟𝑖𝑖𝑖𝑖 denotes the communication rate, i.e., number
of packets sent from 𝑖𝑖 to 𝑗𝑗 per unit time, collected by the afore-
said central controller in each execution epoch. The total NoC
dynamic power 𝑃𝑃𝐷𝐷 is therefore determined by

𝑃𝑃𝐷𝐷 = 𝜌𝜌 ∙ 𝐻𝐻 (3)
where 𝜌𝜌 is the dynamic power consumption of a single packet
going through one router hop. Once a NoC design is given (i.e.,
router radix, link width, frequency, etc.), 𝜌𝜌 can be considered as
a fixed value at the granularity targeted in this paper.

In conclusion, there exists a trade-off between static and dy-
namic power consumption in proactive power gating, and the
optimal solution to minimize the overall power must take into
account both factors.

IV. PROBLEM STATEMENT
Based on the above analysis, we can formulate the proactive

power gating problem as follows.
Given:
1) A mesh on-chip network consisting of 𝑁𝑁 = 𝑛𝑛2 routers

(each router is connected to a core);
2) A set of anchor routers 𝑹𝑹0, each of which connects directly

to an active processing core;
3) Communication rates between the active cores 𝑟𝑟𝑖𝑖𝑖𝑖 , where

the 𝑖𝑖-th and 𝑗𝑗-th routers are both the anchor routers in 𝑹𝑹0;
4) Static power consumption per router 𝛾𝛾, and the coefficient

𝜌𝜌 for dynamic power consumption per packet per hop.

Find:
1) The minimum active router set 𝑹𝑹𝑆𝑆 ⊇ 𝑹𝑹0 that maintains

the connectivity between the anchor routers.
As mentioned above, 𝑹𝑹𝑆𝑆 provides the minimum static power

consumption because it turns on the least possible number of
routers, i.e., |𝑹𝑹𝑆𝑆| is minimum, but with potentially high overall
hop count and high dynamic power consumption.

2) The minimum active router set 𝑹𝑹𝐷𝐷 ⊇ 𝑹𝑹0 that minimizes
hop count.

𝑹𝑹𝐷𝐷 denotes the active router set with a minimum number of
routers, while ensuring all the packets travel through the shortest
path (i.e., the smallest number of hops) between any two anchor
routers to minimize the dynamic power consumption. In other
words, we aim to find the minimum set of routers that provide
shortest paths for all the packets. Turning on more routers than
|𝑹𝑹𝐷𝐷| does not further reduces the overall hop count 𝐻𝐻.

3) The active router set 𝑹𝑹𝑃𝑃 ⊇ 𝑹𝑹0 that minimizes the overall
NoC power consumption.

Since the NoC static power is minimized when |𝑹𝑹𝑆𝑆| routers
are powered on and the dynamic power is minimized when |𝑹𝑹𝐷𝐷|
routers are powered on, the size of 𝑹𝑹𝑃𝑃 for the minimum overall
NoC power consumption satisfies |𝑹𝑹𝑆𝑆| ≤ |𝑹𝑹𝑃𝑃| ≤ |𝑹𝑹𝐷𝐷|.

Note that, in the selection of active routers for 𝑹𝑹𝑃𝑃, it is im-
portant (and challenging) to take into account the communica-
tion rates 𝑟𝑟𝑖𝑖𝑖𝑖 between the active cores, as 𝑟𝑟𝑖𝑖𝑖𝑖 may greatly affect
the overall hop count and thus dynamic power consumption.

V. PROPOSED SOLUTIONS

A. Minimal Active Router Set to Maintain Connectivity
The problem of finding 𝑹𝑹𝑆𝑆 is equivalent to the well-known

Rectilinear Steiner Minimum Tree (RSMT) problem. Recall that
a Steiner minimum tree is a tree of minimum weight that con-
tains all the terminal nodes (may include additional nodes), and
RSMT is a special case where the nodes are connected only by
vertical and horizontal lines. RSMT has been proved to be NP-
complete [12]. In the NoC power gating problem, we need to
find a RSMT, formed by all the routers in 𝑹𝑹𝑆𝑆, to connect all the
terminal (anchor) routers 𝑹𝑹0.

According to the Hanan’s theorem [7], there exists a RSMT
by starting from a minimum spanning tree (MST) of terminal

nodes, and gradually adding Steiner points chosen from a candi-
date set 𝑺𝑺𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 until the total length of the spanning tree cannot
be reduced further. The 𝑺𝑺𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the intersection points of all the
horizontal and vertical lines drawn through the terminal points.
In our case, 𝑺𝑺𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the set of intersection points of all the hor-
izontal and vertical lines drawn through the anchor routers in
𝑹𝑹0. For the example in Figure 2, 𝑹𝑹0 = {2,4,9,11} and 𝑺𝑺𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
{1,3,10,12}, e.g., “1” is the intersection point of the horizontal
line drawn through “2” and “4” and the vertical line drawn
through “9”.

With the above analysis, we propose an algorithm named
Communication-Aware Iterative 1-Steiner (CAIS). As shown in
Alg. 1 below, the basic procedure is as follows: CAIS starts with
a minimum spanning tree (MST) of 𝑹𝑹0 denoted as 𝑀𝑀𝑀𝑀𝑀𝑀(𝑹𝑹0),
and adds the Steiner points one at a time from 𝑺𝑺𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 until no
Steiner points can further reduce the length of the current MST
 𝐿𝐿�𝑀𝑀𝑀𝑀𝑀𝑀(𝑹𝑹)�. An important aspect is how to choose the next
Steiner point. In the proposed algorithm, at each iteration, CAIS
selects a Steiner point that maximizes the reduction of the length
of the current MST. The MST length reduction ∆𝐿𝐿(𝑠𝑠,𝑹𝑹) of any
Steiner point 𝑠𝑠 is calculated by

∆𝐿𝐿(𝑠𝑠,𝑹𝑹) = 𝐿𝐿�𝑀𝑀𝑀𝑀𝑀𝑀(𝑹𝑹)� − 𝐿𝐿�𝑀𝑀𝑀𝑀𝑀𝑀(𝑹𝑹 ∪ {𝑠𝑠})�. (4)
In order to take the communication rates into consideration

to minimize the overall hop count of 𝑹𝑹𝑆𝑆, CAIS uses the overall
hop count 𝐻𝐻 defined in (2) as the tiebreaker. More precisely,
whenever there is a tie in choosing the next Steiner point, CAIS
selects the one that results in a smaller 𝐻𝐻.

Alg. 1 Communication-Aware Iterative 1-Steiner (CAIS)
Initialize 𝑺𝑺, 𝑀𝑀𝑀𝑀𝑀𝑀(𝑹𝑹0) //𝑺𝑺 is the Steiner point set
while 𝑺𝑺𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≠ ∅ and ∆𝐿𝐿(𝑠𝑠,𝑺𝑺 ∪ 𝑹𝑹0) > 0

find all 𝑠𝑠 ∈ 𝑺𝑺𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 which maximizes ∆𝐿𝐿(𝑠𝑠,𝑺𝑺 ∪ 𝑹𝑹0)
if there are multiple solutions of 𝑠𝑠

find 𝑠𝑠 with minimum overall hop count 𝐻𝐻
if ∆𝐿𝐿(𝑠𝑠,𝑺𝑺 ∪ 𝑹𝑹0) > 0 then 𝑺𝑺 = 𝑺𝑺 ∪ {𝑠𝑠} //add 𝑠𝑠 to set 𝑺𝑺
Remove 𝑠𝑠 from 𝑺𝑺𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

return 𝑹𝑹S is the set of all the routers on 𝑀𝑀𝑀𝑀𝑀𝑀(𝑺𝑺 ∪ 𝑹𝑹0)

The overall complexity of the CAIS is 𝑂𝑂(𝑁𝑁3), as there are
𝑂𝑂(𝑁𝑁) iterations in total, each taking 𝑂𝑂(𝑁𝑁2) to locate the next
Steiner point and update 𝐻𝐻. The final step of building 𝑹𝑹S takes
𝑂𝑂(𝑁𝑁2) to complete. Based on [9][12], it can be proven that
CAIS has a worst-case 3/2 approximation ratio.

B. Minimum Active Router Set to Minimize Hop Count
Different from the above 𝑹𝑹𝑆𝑆, the router set 𝑹𝑹𝐷𝐷 allows all the

packets to use the shortest paths (i.e., minimize the overall hop
count) with as few active routers as possible. While keeping all
the routers powered on apparently achieves the minimal hop
count, there might be some unnecessarily powered-on routers.
As shown in the example in Figure 2 where 𝑹𝑹0 = {2,4,9,11},

some routers are not receiving or forwarding any packets (e.g.,
{13,14,15,16}), and some other routers can be powered off but
still allow packets to be re-routed through the minimum path
(e.g., if we power off Routers 1 and 5, the packets from Router
2 to Router 9 can be routed through Routers 6 and 10). There-
fore, the minimum router set 𝑹𝑹𝐷𝐷 should exclude the unnecessary
routers and maximize the “sharing” of routers among multiple
minimum paths.

The problem of finding 𝑹𝑹𝐷𝐷 has an exponential search space
similar to the 𝑹𝑹𝑆𝑆 problem. In order to develop an efficient algo-
rithm for 𝑹𝑹𝐷𝐷 , we identify one crucial property, which is the
memoryless property of the 𝑹𝑹𝐷𝐷 solution on the mesh topology.
To be specific, assume 𝑠𝑠 is a router within the rectangle defined
by router 𝑖𝑖 and 𝑗𝑗 (e.g., Router 6 in the rectangle defined by
Router 4 and 9 in Figure 2). A shortest path 𝑝𝑝𝑖𝑖𝑖𝑖min can be derived
by combining the shortest path 𝑝𝑝𝑖𝑖𝑖𝑖min between 𝑖𝑖 and 𝑠𝑠 with 𝑝𝑝𝑠𝑠𝑠𝑠min
between 𝑠𝑠 and 𝑗𝑗, i.e., 𝑝𝑝𝑖𝑖𝑖𝑖min = 𝑝𝑝𝑖𝑖𝑖𝑖min ∪ 𝑝𝑝𝑠𝑠𝑠𝑠min. For example, a min-
imum path between Routers 4 and 6 is {4,3,2,6}, and the one
between Routers 6 and 9 is {6,10,9}. Combining these two paths
gets a minimum path {4,3,2,6,10,9} between Router 4 and 9.

Inspired by this memoryless property, we propose an algo-
rithm Constructing Along sIngle Dimension (CAID), which pro-
gressively constructs the shortest paths between the anchor rout-
ers along one dimension (e.g., row-by-row from top to bottom).
The basic idea is that, at iteration i to process 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 , all the short-
est paths among the anchor routers from 𝑟𝑟𝑟𝑟𝑟𝑟1 to 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖−1 have
already been constructed in previous iterations and remain un-
changed. Iteration i only needs to construct the horizontal paths
within 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 and the vertical paths from 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 to 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖+1 based
on the relative positions of the active routers on 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 to the bot-
tom (explained next). Here the construction of a path means to
turn on all the routers on that path. In this way, we reduce the
solution search space to one row in each iteration.

Specifically, the CAID algorithm first makes decisions on
the paths from the current row to the next row (vertical paths)
and then connects all the routers in the current row (horizontal
paths) in each iteration. In order to ensure minimum paths be-
tween any pair of routers, the CAID algorithm constructs the
vertical paths for each router based on four basic patterns shown
in Figure 3, where (𝑥𝑥𝑠𝑠 ,𝑦𝑦𝑠𝑠) is the current active router (𝑦𝑦𝑠𝑠 =
𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖). 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 indicate the smallest and largest 𝑥𝑥 coor-
dinates among all the anchor routers located in the remaining
rows from 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖+1 to the last row. We elaborate the four patterns
and their corresponding decisions in the following.
(Pattern A Outsider) When 𝑠𝑠 is outside the left or right bounda-
ries of the remaining routers (i.e., 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑥𝑥𝑠𝑠 or 𝑥𝑥𝑠𝑠 > 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚),
CAID constructs an XY path from 𝑠𝑠 to the corner router
(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖+1) or (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖+1).
(Pattern B Uncovered Half) When 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑥𝑥𝑠𝑠 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , and no
routers in the current row are active on one side of 𝑠𝑠 (i.e.,

1 3

6 7 8

9 10 12

13 14 15 16

2 4

5

11

Figure 2. Mesh example.

(xs,ys)

xmax

rowi+1

(a) Pattern A: outsider (b) Pattern B: uncovered half (c) Pattern C: sink (d) Pattern D: bridge

(xs,ys)(xs,ys)
No active

routers
Current router

New vertical path

Active router
and path

Area containing
active routers

xmaxxmin xmaxxmin

xrhsxlhs

rowi rowi

rowi+1

rowi

rowi+1

(xs,ys)
xmaxxmin

xrhsxlhs

rowi

rowi+1

Figure 3. Four basic patterns for vertical path decisions from rowi to rowi+1 in CAID.

[𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑠𝑠) or (𝑥𝑥𝑠𝑠, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚]), CAID constructs the path from 𝑠𝑠 to
(𝑥𝑥𝑠𝑠, 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖+1), i.e., the router right below 𝑠𝑠.
(Pattern C Sink) When 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑥𝑥𝑠𝑠 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and there are active
routers in the current row on both sides of 𝑠𝑠, if there exists an
remaining anchor router from column 𝑥𝑥𝑙𝑙ℎ𝑠𝑠 to 𝑥𝑥𝑟𝑟ℎ𝑠𝑠 where 𝑥𝑥𝑙𝑙ℎ𝑠𝑠 =
max
𝑥𝑥

{𝑥𝑥 < 𝑥𝑥𝑠𝑠} and 𝑥𝑥𝑟𝑟ℎ𝑠𝑠 = min
𝑥𝑥

{𝑥𝑥 > 𝑥𝑥𝑠𝑠} (𝑥𝑥 is the 𝑥𝑥 coordinates
of active routers on 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖), CAID constructs the path from 𝑠𝑠 to
(𝑥𝑥𝑠𝑠, 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖+1).
(Pattern D Bridge) When 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑥𝑥𝑠𝑠 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , and there are no
remaining anchor routers from column 𝑥𝑥𝑙𝑙ℎ𝑠𝑠 to 𝑥𝑥𝑟𝑟ℎ𝑠𝑠, CAID con-
structs no new vertical paths.

The pseudo code of the above CAID is shown below:
Alg. 2 Constructing Along sIngle Dimension (CAID)
Initialize 𝑹𝑹𝐷𝐷 = 𝑹𝑹0
sort the routers in 𝑹𝑹0 based on their row number {𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖}
foreach 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 in {𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖}

if 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 is the last row with anchor routers
//construct horizontal paths
𝑹𝑹𝐷𝐷 = 𝑹𝑹𝐷𝐷 ∪ �𝑠𝑠|𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 ≤ 𝑥𝑥𝑠𝑠 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 ,𝑦𝑦𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖�

break
endif
find 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 of the remaining rows
foreach active router 𝑠𝑠 in 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

if (Pattern A==true)
//turn on all the routers from 𝑠𝑠 to the corner router
𝑹𝑹𝐷𝐷 = 𝑹𝑹𝐷𝐷 ∪ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋ℎ�𝑠𝑠, (𝑥𝑥𝑚𝑚, 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖+1)� a
else if (Pattern B or C==true)
// turn on all the routers from 𝑠𝑠 to 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖+1
𝑹𝑹𝐷𝐷 = 𝑹𝑹𝐷𝐷 ∪ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋ℎ�𝑠𝑠, (𝑥𝑥𝑠𝑠, 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖+1)�
else if (Pattern D==true)
//do nothing

endfor
//construct horizontal paths
𝑹𝑹𝐷𝐷 = 𝑹𝑹𝐷𝐷 ∪ �𝑠𝑠|𝑥𝑥𝑠𝑠 ∈ �𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖�, 𝑦𝑦𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖�

return the router set 𝑹𝑹𝐷𝐷
a. Function 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋ℎ(𝑎𝑎, 𝑏𝑏) returns the set of routers on the path following X-Y routing from 𝑎𝑎 to 𝑏𝑏.

CAID has 𝑛𝑛 iterations (𝑛𝑛 rows), each having 𝑛𝑛 routers. For
each router, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, and whether there are any routers from
column 𝑥𝑥𝑙𝑙ℎ𝑠𝑠 to 𝑥𝑥𝑟𝑟ℎ𝑠𝑠 are calculated in 𝑂𝑂(log𝑁𝑁) by maintaining a
binary search tree. The step of adding horizontal paths for each
row takes 𝑂𝑂(𝑛𝑛) . Overall, CAID has a complexity of 𝑂𝑂(𝑛𝑛) ⋅
�𝑂𝑂(𝑛𝑛) ⋅ 𝑂𝑂(log𝑁𝑁) + 𝑂𝑂(𝑛𝑛)� = 𝑂𝑂(𝑁𝑁 log𝑁𝑁).

C. Active Router Set to Minimize Overall NoC Power
With 𝑹𝑹𝑆𝑆 achieves the minimal static power and 𝑹𝑹𝐷𝐷 achieves

the minimal dynamic power, the active router set 𝑹𝑹𝑃𝑃 for achiev-
ing the minimal overall NoC power can be found by powering
on additional routers on top of 𝑹𝑹𝑆𝑆. We adopt a similar basic flow
of CAIS to find 𝑹𝑹𝑃𝑃, i.e., iteratively turn on routers until a satis-
fying result is achieved. However, choosing one router to power
on in each iteration may make no difference in the hop count, as
a new path often requires more than one router. Therefore, in-
stead of adding one router a time, we propose the Communica-
tion-Aware Iterative 1-Path (CAIP) algorithm that chooses one
path at each iteration and turns on all the routers on that path. In
this way, we can explore the full range of static-dynamic power
trade-off, from the starting point of 𝑹𝑹𝑆𝑆 up to 𝑹𝑹𝐷𝐷, as the overall

hop count 𝐻𝐻 can always be reduced if 𝑹𝑹𝐷𝐷 is not reached (i.e.,
there exists two routers with no minimum path between them).

Similar to the CAIS algorithm, a criterion of selecting a new
path is needed for the CAIP algorithm. This criterion should re-
flect not only the cost of turning on a path but also the reward of
doing so. The cost equals the static power increase, whereas the
reward should comprise of two parts, namely (i) the dynamic
power savings due to the hop count decrease brought by the new
path, and (ii) the potential of the newly powered-on routers on
future new paths to reduce dynamic power in later iterations as
part of other minimum paths. More precisely, some powered-off
routers may belong to minimum paths of more than one router
pairs, and the future reward of turning on other paths of these
“shared” routers should also be considered. For example, using
the numbering in Figure 2, assume no minimum path is available
between Routers 2 and 11 or between Routers 9 and 11. For add-
ing a minimum path {9,10,11} between Routers 9 and 11, its re-
ward calculation should include its own contribution in hop
count reduction as well as the potential to further reduce the hop
count between Routers 2 and 11.

Based on the above analysis, we give the criterion of select-
ing the paths as follows. We first define the weighted hop count
reduction Δ𝐻𝐻𝑖𝑖𝑖𝑖 for each router pair, which equals the hop count
decrease in the overall hop count 𝐻𝐻 if we connect router 𝑖𝑖 and 𝑗𝑗
with a minimum path,

Δ𝐻𝐻𝑖𝑖𝑖𝑖 = ��𝑝𝑝𝑖𝑖𝑖𝑖� − 𝑀𝑀(𝑖𝑖, 𝑗𝑗)� ∙ 𝑟𝑟𝑖𝑖𝑖𝑖 (5)

where 𝑝𝑝𝑖𝑖𝑖𝑖 is the current path from router 𝑖𝑖 to 𝑗𝑗, and 𝑀𝑀(𝑖𝑖, 𝑗𝑗) is the
Manhattan distance (i.e., the length of a minimum path in mesh
networks). The difference between 𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑀𝑀(𝑖𝑖, 𝑗𝑗) is weighted
by 𝑟𝑟𝑖𝑖𝑖𝑖 to reflect the actual decrease on 𝐻𝐻.

With Δ𝐻𝐻𝑖𝑖𝑖𝑖 calculated, we define the reward function 𝑔𝑔(𝑠𝑠) of
router 𝑠𝑠, i.e., the potential power savings of turning on a pow-
ered-off router 𝑠𝑠 as

𝑔𝑔(𝑠𝑠) = 𝜌𝜌 ∙� Δ𝐻𝐻𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖𝑖𝑖
min∋𝑠𝑠

− 𝛾𝛾,∀𝑠𝑠 ∉ 𝑹𝑹𝑆𝑆 (6)

where 𝛾𝛾 is subtracted from the 𝑔𝑔(𝑠𝑠), indicating the cost of static
power consumption incurred by powering on the router. The re-
ward part uses the summation of Δ𝐻𝐻𝑖𝑖𝑖𝑖 over all the router pairs 𝑖𝑖
and 𝑗𝑗 that has a minimum path via router 𝑠𝑠 (𝑝𝑝𝑖𝑖𝑖𝑖min ∋ 𝑠𝑠).

Finally, the gain function of turning on a minimum path
𝑝𝑝𝑖𝑖𝑖𝑖min(𝑘𝑘) between router 𝑖𝑖 and 𝑗𝑗 is defined by

𝑔𝑔 �𝑝𝑝𝑖𝑖𝑖𝑖min(𝑘𝑘)� = � 𝑔𝑔(𝑠𝑠)
𝑠𝑠∈𝑝𝑝𝑖𝑖𝑖𝑖

min(𝑘𝑘)
 (7)

𝑝𝑝𝑖𝑖𝑖𝑖min(𝑘𝑘) denotes the 𝑘𝑘 -th minimum path between 𝑖𝑖 and 𝑗𝑗 as
there could be more than one minimum path.

As shown in the pseudo code below, the CAIP algorithm
first sorts all the anchor router pairs in 𝑹𝑹𝑆𝑆 based on Δ𝐻𝐻𝑖𝑖𝑖𝑖 in de-
scending order. When processing each router pair 𝑖𝑖 and 𝑗𝑗, a min-
imum path with the maximum gain 𝑔𝑔 �𝑝𝑝𝑖𝑖𝑖𝑖min(𝑘𝑘)� based on (7) is
selected. CAIP then powers on the path, and updates 𝑔𝑔(𝑠𝑠) by
subtracting Δ𝐻𝐻𝑖𝑖𝑖𝑖 from the gain functions of all the other pow-
ered-off routers on the minimum paths between 𝑖𝑖 and 𝑗𝑗 (because
this gain Δ𝐻𝐻𝑖𝑖𝑖𝑖 has been already utilized in this round). The algo-
rithm continues for the rest of the router pairs until (i) ∀Δ𝐻𝐻𝑖𝑖𝑖𝑖 =
0, i.e., every anchor router pair (but not necessarily all the router
pairs) has a minimum path between them, or (ii) 𝑃𝑃(𝑹𝑹𝑃𝑃) ≥

𝑃𝑃(𝑹𝑹𝐷𝐷), i.e., 𝑹𝑹𝑃𝑃 has reached 𝑹𝑹𝐷𝐷 where no more active router
would reduce 𝐻𝐻 further (all router pairs have minimum paths).
Alg. 3 Communication-Aware Iterative 1-Path (CAIP)
Initialize 𝑹𝑹𝑃𝑃 = 𝑹𝑹𝑆𝑆
Sort the router pairs based on Δ𝐻𝐻𝑖𝑖𝑖𝑖
foreach Δ𝐻𝐻𝑖𝑖𝑖𝑖 in the sorted list �Δ𝐻𝐻𝑖𝑖𝑖𝑖�

if 𝑃𝑃(𝑹𝑹𝑃𝑃) ≥ 𝑃𝑃(𝑹𝑹𝐷𝐷) (reaches the end of 𝑹𝑹𝑆𝑆 to 𝑹𝑹𝐷𝐷 range)
return the router set 𝑹𝑹𝑃𝑃 = 𝑹𝑹𝐷𝐷

find 𝑝𝑝𝑖𝑖𝑖𝑖min(𝑘𝑘) s.t. 𝑔𝑔 �𝑝𝑝𝑖𝑖𝑖𝑖min(𝑘𝑘)� ≥ 𝑔𝑔 �𝑝𝑝𝑖𝑖𝑖𝑖min(𝑙𝑙)� ,∀𝑙𝑙
𝑹𝑹𝑃𝑃 = 𝑹𝑹𝑃𝑃 ∪ 𝑝𝑝𝑖𝑖𝑖𝑖min(𝑘𝑘) // turn on all the routers on the path
calculate overall power 𝑃𝑃(𝑹𝑹𝑃𝑃) = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑹𝑹𝑃𝑃) + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑹𝑹𝑃𝑃)
if 𝑃𝑃(𝑹𝑹𝑃𝑃) < 𝑃𝑃min // better than the current one so far
𝑃𝑃min = 𝑃𝑃(𝑹𝑹𝑃𝑃), 𝑹𝑹𝑃𝑃,min = 𝑹𝑹𝑃𝑃

foreach router 𝑠𝑠 on a minimum path between 𝑖𝑖 and 𝑗𝑗
𝑔𝑔(𝑠𝑠) = 𝑔𝑔(𝑠𝑠) − Δ𝐻𝐻𝑖𝑖𝑖𝑖 ,∀𝑠𝑠 ∉ 𝑹𝑹𝑃𝑃

return the router set 𝑹𝑹𝑃𝑃,min
The complexity of this algorithm is 𝑂𝑂(𝑁𝑁3), explained in the

following. Assume 𝑅𝑅𝑖𝑖 routers are powered on in the 𝑖𝑖-th itera-
tion. Finding the path for each router pair takes 𝑂𝑂(𝑛𝑛2), adding
each router to 𝑹𝑹𝑃𝑃 and updating power consumption (equivalent
to 𝐻𝐻) takes 𝑂𝑂(𝑁𝑁2), and updating 𝑔𝑔(𝑠𝑠) takes 𝑂𝑂(𝑛𝑛2). Therefore,
the overall complexity is ∑ 𝑅𝑅𝑖𝑖 ⋅ �𝑂𝑂(𝑁𝑁2) + 𝑂𝑂(𝑛𝑛2)�𝑖𝑖 = 𝑂𝑂(𝑁𝑁3),
as there are 𝑁𝑁 routers in total and each router cannot be powered
on more than once.

VI. EVALUATION

A. Evaluation Setup
We evaluate the proposed power gating schemes on an 8x8

mesh-based NoC, with the multi-threaded PARSEC bench-
marks [2] running on the cycle-accurate full-system gem5 sim-
ulator [3]. We experiment with 8, 16, and 32 active cores, and
these active cores are randomly selected from the 64 cores on
the 8x8 mesh. The following results are the average of ten ran-
domly generated active core sets unless otherwise specified. The
NoC power consumption data are from the post-synthesized
router circuits under the 15 nm technology node by North Caro-
lina State University [17]. Table I lists the key parameters.

Deadlock-avoidance: Given the light communication rates
in real applications and thus the low likelihood of deadlock, we
adopt a deadlock recovery approach. If packet latency exceeds a
timeout threshold (indicating possible deadlock), all routers are
powered back on to re-engage the original deadlock-free NoC.
As true deadlock is extremely rare, the threshold can be very
large (e.g., 10k cycles) to a point that has negligible actual per-
formance impact. We compare the following six schemes:
1) Baseline: no power gating applied (NoPG);
2) Two Router Parking schemes proposed in [13]: aggressive

(RPA) and conservative (RPC). RPA powers off as many
routers as possible to minimize static power, which has the
similar goal as our CAIS; whereas RPC powers off a subset
of routers to minimize hop count increase1, which has the
similar goal as our CAID.

3) The three proposed schemes: CAIS, CAID, and CAIP to find
𝑹𝑹𝑆𝑆 , 𝑹𝑹𝐷𝐷 , and 𝑹𝑹𝑃𝑃 respectively (to increase clarity, we name
the algorithms in a way that the last letter also matches the
objectives of minimizing static, dynamic, and overall power).

B. Comparison of the Power Gating Schemes
Figure 4 shows the results of NoC power consumption and

hop count of the six schemes under different numbers of active
cores, averaged over the PARSEC benchmarks. For better read-
ability, the hop count in the figure is averaged to each packet
(i.e., 𝐻𝐻 ∑ ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖⁄) instead of 𝐻𝐻 directly which would otherwise
be a less intuitive value that depends on traffic intensity.

Among the five power gating algorithms, both RPA and
CAIS aim at minimizing static power while maintaining full
connectivity. Compared to RPA, the proposed CAIS achieves an
average of 21.7% less static power consumption with 5.4% less
dynamic power consumption on average, indicating CAIS not
only reduces the number of active routers, but also considers the
hop count between active cores to reduce dynamic power. In ad-
dition, the proposed CAID guarantees the same minimal hop
count as NoPG, but achieves an average of 18% power savings
compared to NoPG. In contrast, RPC solutions require 14.5%
more routers to be powered on than CAID on average while in-
curring 3.4% hop count increase compared to NoPG. RPC also
has 31.7% higher static power consumption compared to CAID.

Finally, compared to NoPG, the proposed CAIP achieves
33.4% overall NoC power consumption savings under 8 active
cores, and 24.0%, 17.4% under 16 and 32 active cores (all out
of 64 cores), respectively. As can be seen, CAIP may not have
the minimal hop count or the minimum number of active routers,
but it achieves the minimal overall NoC power among all the
schemes. This verifies that the minimal overall power may be
different from the minimal static power or the minimal dynamic
power configurations.

C. Trade-off between Static Power and Dynamic Power
To further study the trade-off between static and dynamic

power, we look at the results of one of the benchmarks, x264, in
detail. Other PARSEC benchmarks exhibit similar trends, alt-
hough the specific values are not exactly the same. Figure 5 plots
the changes of static power, dynamic power, and overall NoC
power consumption as the number of active router increases, for
a randomly generated set of 16 active cores shown in Figure 6.
The static power is linearly proportional to the number of active
routers. The solution generated by CAIS corresponds to the left-
most case, in which the dynamic power accounts for as high as
79.2% of the overall NoC power due to the large hop count
caused by detour. As new minimum paths are added, the dy-
namic power consumption reduces because of the smaller hop
count between the active cores. The dynamic power gradually
gets close to a minimum as the active router set gets close to
CAID. The overall NoC power consumption is minimized at 36
active routers with 0.45W, of which 57.7% comes from dynamic
power and 42.3% comes from static power.

1 The paper [13] claims RPC minimizes latency overhead, which is equiva-
lent to minimizing overall hop count per unit time in their paper setup.

TABLE I. KEY PARAMETERS IN EVALUATION.
Network topology 8x8 mesh
Link bandwidth 128 bits/cycle
Router 3-stage, 3GHz
Virtual channel 2 VCs/VN, 3 VNs, 5-flit for data, 1-flit for control
Private I/D L1$ 32KB, 2-way, LRU, 1-cycle latency
Shared L2 per bank 256KB, 16-way, LRU, 6-cycle latency
Coherence protocol Two-level MESI
Memory controllers 4, located one at each corner
Memory latency 128 cycles

Figure 6 depicts the solutions generated by the three pro-
posed algorithms for the above example. The anchor routers are
shown in white blocks. The CAIS solution in Figure 6(a) needs
to power on 11 routers (in green blocks) in addition to the anchor
routers to ensure full connectivity; whereas CAID turns on 31
routers (in red blocks) to minimize hop count. Finally, the CAIP
algorithm achieves the lowest power by turning on 20 routers (in
blue blocks), or 9 more routers on top of CAIS. The newly added
paths on top of CAIS are highlighted in red lines.

D. Impact on Latency and NoC Energy
We also investigate the impact of the proposed power gating

schemes on performance and energy. Figure 7(a) and (b) com-
pare the latency and NoC energy averaged over the PARSEC
benchmarks under the six schemes. RPA and CAIS take longer
with 6.9% and 8.0% latency overhead, respectively, but CAIS is
able to save 9.9% NoC energy compared to NoPG, which is
7.0% more than that of RPA. For RPC and CAID, they have
negligible performance overhead because of their minimal im-
pact on hop count, and they save 10.4% and 19.5% NoC energy
compared to NoPG, respectively. This indicates that CAID can
be adopted to save NoC energy when high performance NoC is
required during runtime. Lastly, among these six schemes, the
minimal power solution CAIP achieves 25.8% NoC energy sav-
ing with only 3.5% latency overhead compared to NoPG.
E. Discussion on Implementation

Similar to RPA and RPC [13], the proposed scheme can be
implemented in either hardware or software. For the hardware
approach, a dedicated component is implemented to execute the
algorithm once every epoch. For the software approach, the al-
gorithm is executed on a processing core once every epoch. Sen-
sitivity study shows that an epoch length of 50k cycles can reap
most of the power-saving benefits while incurring negligible
power overhead for both hardware and software implementa-
tions. However, software avoids the complexity of additional
components, thus being a better implementation overall. We
adopt the software approach for all the evaluated schemes, and
the power overhead of running the algorithms has been ac-
counted for in the total power.

VII. CONCLUSION
This paper identifies and explores the important trade-off be-

tween static and dynamic power in proactive NoC power gating
schemes. We present three efficient algorithms to find the active
router set that minimize the static, dynamic, and overall NoC
power, respectively. Simulation results demonstrate the ad-
vantage of the proposed algorithms over prior art.
Acknowledgements: This research was supported, in part, by
NSF grants #1619456, #1619472 and #1750047.

REFERENCES
[1] L. A. Barroso, and U. Hölzle, "The case for energy-proportional

computing," Computer, no. 12, pp. 33-37, 2007.
[2] C. Bienia, S. Kumar, J. Singh, and K. Li, "PARSEC 2.0: A new benchmark

suite for chip-multiprocessors." Workshop on Modeling, Benchmarking
and Simulation, 2009.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A Saidi, A. Basu, J
Hestness, D. R. Hower, T. Krishna, S. Sardashti, and R. Sen. "The gem5
simulator,", in ACM SIGARCH Computer Architecture News, 2011.

[4] L. Chen, and T. M. Pinkston, "NoRD: Node-router de-coupling for
effective power-gating of on-chip routers," in MICRO, 2012.

[5] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski, “Catnap:
Energy Proportional Multiple Network-on-Chip," in ACM SIGARCH
Computer Architecture News, 2013.

[6] B. Daya, C.-H. Chen, S. Subramanian, W.-C. Kwon, S. Park, et al.,
“SCORPIO: A 36-core research chip demonstrating snoopy coherence on
a scalable mesh NoC with in-network ordering,” in ISCA, 2014.

[7] M. Hanan. "On Steiner's problem with rectilinear distance," SIAM
Journal on Applied Mathematics, vol. 14, no. 2, pp. 255-265, 1966.

[8] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, "A 5-GHz
mesh interconnect for a Teraflops processor," in MICRO 2007,

[9] A. B. Kahng, and G. Robins, "A new class of iterative Steiner tree
heuristics with good performance," in IEEE TCAD, 1992.

[10] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram, "A case for
guarded power gating for multi-core processors," in HPCA 2011.

[11] H. Matsutani, M. Koibuchi, D. Ikebuchi, et al., "Ultra fine-grained run-
time power gating of on-chip routers for CMPs," in NOCS, 2010.

[12] G. Robins, and A. Zelikovsky. “Minimum steiner tree construction,” The
Handbook of Algorithms for VLSI Phys. Design Automation, 2009.

[13] A. Samih, R. Wang, A. Krishna, C. Maciocco, C.-M. Tai, and Y. Solihin,
"Energy-efficient interconnect via router parking," in HPCA, 2013.

[14] C. Sun, et al., "DSENT-A tool connecting emerging photonics with
electronics for opto-electronic network-on-chip modeling," NOCS 2012.

[15] S. Yue, L. Chen, D. Zhu, T. M. Pinkston, and M. Pedram, “Smart
butterfly: reducing static power dissipation of network-on-chip with core-
state-awareness,” in ISLPED, 2014.

[16] “FreePDK15: Contents,” www.eda.ncsu.edu/wiki/FreePDK15.

Figure 4. Comparison of different algorithms for PARSEC benchmarks.

Figure 5. Static-dynamic power trade-off curve.

(a) CAIS (b) CAID (c) CAIP

anchor router

turned on by CAIS

turned on by CAID

turned on by CAIP

power-gated router

Figure 6. x264 result with 16 active cores.

Figure 7. Latency and energy comparisons.

	I. Introduction
	II. Background
	A. Power Consumption of On-Chip Networks
	B. Power Gating Techniques of On-Chip Networks

	III. Motivation
	IV. Problem Statement
	1) The minimum active router set ,𝑹-𝑆.⊇,𝑹-0. that maintains the connectivity between the anchor routers.
	2) The minimum active router set ,𝑹-𝐷.⊇,𝑹-0. that minimizes hop count.
	3) The active router set ,𝑹-𝑃.⊇,𝑹-0. that minimizes the overall NoC power consumption.

	V. Proposed Solutions
	A. Minimal Active Router Set to Maintain Connectivity
	B. Minimum Active Router Set to Minimize Hop Count
	C. Active Router Set to Minimize Overall NoC Power

	VI. Evaluation
	A. Evaluation Setup
	B. Comparison of the Power Gating Schemes
	C. Trade-off between Static Power and Dynamic Power
	D. Impact on Latency and NoC Energy
	E. Discussion on Implementation

	VII. Conclusion
	References

